
Pollard’s Rho Algorithm for Discrete Logarithm

Computation ∗

Franklin Harding

November 5, 2023

1 Introduction

Let G be a finite cyclic group for which g is a generator and h is a random
group element. The discrete logarithm problem (DLP) is to find the smallest
non-negative integer x so that h = gx. The existence of an efficient algorithm
for solving the DLP would render Diffie-Hellman (DH) key exchange, ElGamal
encryption, and various other cryptosystems insecure. In practice, G is typically
Z∗
p or the points of an elliptic curve over a finite field of order p (p prime).
Pollard suggested a method for solving DLPs in Z∗

p [Pol78] based on his
“rho” idea initially exploited for factoring [Pol75]. The resulting algorithm
takes O(

√
|G|) group operations and has negligible space requirements. When

combined with the methods of Pohlig and Hellman [PH78], the run time is
reduced to O(

√
p) where p is the largest prime dividing |G|.

Shoup demonstrated that generic discrete log algorithms (that succeed with
high probability) must perform at least Ω(

√
p) group operations where p is

the largest prime dividing the order of G [Sho97]. In other words, Pollard’s
rho algorithm is the best we can do. While sub-exponential time algorithms
exist for Z∗

p, Pollard’s rho algorithm is still the weapon of choice for elliptic
curve DLPs. However, contemporary implementations differ in many ways from
Pollard’s original rho algorithm. We will discuss these variations and analyze
their performance empirically.

2 Preliminaries

We use N0 to the denote the set of non-negative integers, i.e. N
⋃
{0}. For

fixed n ∈ N, we write Zn for the group of integers modulo n with multiplication

∗This report was written for a single CS 406 projects credit and was supervised by Ji-
ayu Xu. I did not end up having quite enough time to perform all of the experiments
that I would have liked to, but at least one is given in this report. The source code for
my implementation of Pollard’s rho algorithm with Teske’s 20-adding walk is available at
https://github.com/fharding1/pollard-rho.

1

https://github.com/fharding1/pollard-rho

modulo n, and Z×
n , denotes the group of units of Zn. We will mostly deal with

Zp where p is prime, in which case Z×
p = Z∗

p = Zp \ {0}. When we deal with a
generic group G we assume that for all g, h ∈ G we can efficiently compute gh
and represent each group element as a unique binary string.

3 Pollard’s rho method

Let W be a finite set and f : W → W be a mapping. For any w0 ∈ W , the
sequence w0, f(w0), f(f(w0)), . . . is eventually periodic since W is finite. This
idea can be used to solve many computational problems and is referred to as
the rho method. As a warm up and to introduce some terminology, we will
describe Pollard’s original rho algorithm for solving the DLP in Z∗

p; but first,
some motivation.

Let G be a group for which g is a generator and h is an arbitrary element.
Recall that the DLP is to find the smallest non-negative integer x so that h = gx.
If we have some a, a′, b, b′ ∈ Z so that hagb = ha′

gb
′
then we can substitute

h = gx yielding (gx)a−a′
= gb

′−b which implies

x(a− a′) ≡ b′ − b (mod |G|),

and we can easily compute x so long as a−a′ is relatively prime to |G|. A naive
method for solving DLPs based on this idea is to repeatedly randomly sample
a, b ∈ Z and store hagb in a table until you get a collision. However, the space
requirements for this method are too significant for the large groups used in
modern cryptography. This idea can be combined with Pollard’s rho method to
produce a more practical algorithm—but first we need to address the elephant
in the room: what if |G| has small factors?

At first blush this seems like a significant problem. If we take G = Z∗
p

for some prime p > 2, then |G| = p − 1 always has even order and our toy
algorithm fails with high probability. Pollard originally used trial multiplication
rather than inversion to solve the linear congruence, which is fairly efficient for
most primes and circumvents this problem. We will use the Pohlig-Hellman
method, which allows us to solve a DLP in any group by first solving DLPs
in its prime power order subgroups, and then reconstructing a solution to the
original DLP via the Chinese Remainder Theorem [PH78]. The “strong primes”
used in modern cryptography are picked so that p−1 has no small prime factors,
so a − a′ is relatively prime to those prime power subgroup orders with high
probability anyways.

3.1 Z∗
p DLPs

Let p be a prime for which g is a primitive root, and h be a random element of
Z∗
p. Recall that the DLP is to find the smallest non-negative integer x so that

2

h = gx. Pollard’s original method is as follows. Let f : Z∗
p → Z∗

p be given by

f(y) =


hy if 0 < y < 1

3p

y2 if 1
3p < y < 2

3p

gy if 2
3p < y < p

.

Define the sequence (yk) via the rule y0 = 1 and yi+1 = f(yi) for all i ∈ N0. We
refer to f as Pollard’s original iterating function, and (yk) as a psuedorandom
walk in Z∗

p. Then there are sequences (ai) and (bi) so that yi = haigbi which
satisfy a0 = b0 = 0 and the recurrence relations:

ai+1 =


ai + 1 if 0 < y < 1

3p

2 ∗ ai if 1
3p < y < 2

3p

ai if 2
3p < y < p

bi+1 =


bi if 0 < y < 1

3p

2 ∗ bi if 1
3p < y < 2

3p

bi + 1 if 2
3p < y < p

As Z∗
p is finite (of order p − 1), the psuedorandom walk (yk) is eventually

periodic. That is, there exist distinct indices i, j ∈ N0 such that yi = yj . In
order to find them, we apply Floyd’s cycle-finding algorithm. Then we have
haigbi = hajgbj and since h = gx we have (gx)ai−aj = gbj−bi thus

x(ai − aj) ≡ bj − bi (mod p− 1).

Pollard’s original rho algorithm for solving the DLP in Z∗
p can easily be

modified to work for other groups and indeed, his iterating function f is not
unique. However, the fact that we can find sequences (ai) and (bi) as described
is important. This motivates the following definitions:

Definition 1. Let G be a finite cyclic group and g, h, y ∈ G. An iterating
function on G is a function f : G → G such that for any a, b ∈ N0 such that
y = hagb we can efficiently compute a′, b′ ∈ N0 such that f(y) = ha′

gb
′
.

Definition 2. Let G be a finite cyclic group and f be an iterating function on
G. A sequence (yk) is a walk in G with F if y0 ∈ G and yk+1 = f(yk) for all
k ∈ N0.

Clearly f is an iterating function, and (yk) is a walk in Z∗
p with f . In the

next section, we will discuss new walks with new iterating functions as proposed
by Teske.

4 Teske’s r-adding and r+q-mixed walks

Teske came up with new walks and proved both empirically and analytically that
they perform better than Pollard’s original walk [Tes01]. The idea is intuitive:
an iterating function with “more rules” ends up “looking more random” so we
find a match in fewer steps. Walks without a squaring rule are called r-adding.

3

Definition 3. Let G be a finite cyclic group, r ∈ N, and m1, . . . ,mr ∈ G.
Furthermore, let v : G → {1, 2, . . . , r} be a hash function and f be an iterating
function on G. A walk (yk) on G with f is called r-adding if f is of the form
f(y) = y ∗mv(y) for all y ∈ G.

Teske also generalized Pollard’s original walk as r+q-mixed walks, which have
both multiplication and squaring rules:

Definition 4. Let G be a finite cyclic group, r, q ∈ N, and m1, . . . ,mr ∈ G.
Furthermore, let v : G → {1, . . . , r+ q} be a hash function and f be an iterating
function on G. A walk (yk) on G with f is called r + q-mixed if f is of the
form:

f(y) =

{
y ∗mv(y) if v(y) ∈ {1, . . . , r}
y2 if v(y) ∈ {r + 1, . . . , r + q}

.

So Pollard’s original iterating function is a 2+1-mixed walk. The difference
between Teske’s walks and Pollard’s original walk is significant; she found that
a 16-adding walk yields a speed-up by a factor of at least 1.25 compared to Pol-
lard’s original walk. Also, Teske used Knuth’s multiplicative hash function, but
wrote “in practical applications, simpler hash functions that can be evaluated
faster are certainly preferable.”

4.1 Hash functions

Teske’s r-adding and r + q-mixed walks require the use of a hash function in
order to partition the group into roughly equal sized sets. In the case of Pollard’s
original rho algorithm as a 2+ 1-mixed walk, this “hash function” is essentially
v : Z∗

p → {1, 2, 3} given by

v(y) =


1 if 0 < y < p/3

2 if 2/3p < y < p

3 if 1/3p < y < 2/3p

.

There is a subtlety of the manner in which a group G is partitioned and the
iterating function f is designed in the case of r + q-mixed walks; if e is the
identity for G, then we would like v(e) ∈ {1, . . . , r} and mv(e) ̸= e, otherwise
f(e) = e2 = e and the walk becomes constant.

Hash functions suitable for this application should be fast and produce a
roughly even distribution but do not need to be cryptographic. Examples in-
clude FNV32 and Murmur3.

5 Cycle-finding

Let W be a finite set, and f : W → W be a mapping. Define the sequence
(wk)k∈N0

via the rule w0 ∈ W and wi+1 = f(wi). Then (wk) is eventually

4

periodic, so there exist distinct indices i, j ∈ N0 such that wi = wj . The task
of finding such indices is called finding a match. More generally, there exist
λ ∈ N and µ ∈ N0 such that w0, . . . , wµ+λ−1 are distinct and wk = wk+λ for
all integers k ≥ µ. λ is called the period and µ is called the preperiod. The
process of finding the preperiod and period is called cycle-finding. Finding just
one match suffices for our purposes (that is, we don’t care about λ and µ) but
most match-finding algorithms are cycle-finding algorithms and vice versa. In
this paper, both refer to finding a match.

One of the most basic cycle-finding algorithms (used in Pollard’s original rho
algorithm) is known as Floyd’s cycle-finding algorithm, and works as described
in figure 1.

1. Define a := w0, b := w0, and i := 0

2. Repeat i := i+ 1, a := f(w0), b := f(f(w0)) until a = b

3. Return (i, 2i)

Figure 1: Floyd’s cycle-finding algorithm [Bre80]

If it does not cost much to evaluate f , then this is a fairly space and time
efficient algorithm. On the other hand, if evaluating f is expensive, then there
are better algorithms such as Brent’s [Bre80]. Schnorr and Lenstra furter im-
proved upon Brent’s algorithm for a specific application of cycle-finding, and
their method was generalized by Teske [Tes98].

The method of distinguished points proposed by van Oorschot and Wiener
[OW99] allows for the paralellization of Pollard’s rho algorithm. In this method,
each processor chooses a random group element to start its walk. Upon each
iteration the processor checks whether the group element meets some efficiently
testable property, such as the number of leading zeroes in its binary representa-
tion. If the group element satisfies that criteria it is considered a distinguished
point, and it along with the initial group element is sent to a central repository
shared by all processors (otherwise the walk just continues). If the same group
element occurs twice in the central repository, then their walks can be recon-
structed to find a collision. Given the parallel speed-up, this method essentially
renders conventional cycle-finding obsolete.

6 Group automorphisms

Let G = E(Fq) where q = pn for some prime p and n ∈ N. The negation
map (x, y) 7→ (x,−y) is an automorphism on G of order 2, and if an iterating
function f on G is defined so that f(y) = f(−y), then it is actually defined
on the equivalence classes of G under ±. This reduces the average number of
iterations to find a match by a factor of

√
2 [BLS11]. If p = 2 (e.g. Koblitz

curves), then a similar idea is to use the Frobenius map (x, y) → (x2, y2), which

5

results in a speed up by a factor of
√
2n [GLV00]. Either method introduces

some issues with “fruitless cycles” which require some additional work to avoid
[BKL]. These are typically the only easily computed automorphisms of small
order for elliptic curves.

7 Experiments

We implemented Pollard’s rho algorithm and these optimizations in C using
the GNU Multiple Precision (https://gmplib.org/) and Permuted Congruen-
tial Generator (https://www.pcg-random.org/) libraries for arbitrary-precision
math and random number generation respectively. We tested each variation
against prime-order subgroups of Z∗

p with orders between 10n−1 and 10n for 3 ≤
n ≤ 13. Our code is available on Github at https://github.com/fharding1/pollard-
rho.

Teske showed that if the iterating function on a finite group G behaves like a
randommapping and her cycle-finding algorithm based on Schnorr and Lenstra’s
is used, then we expect a match in approximately 1.416

√
|G| iterations. Thus,

she used the metric

L :=
of iterations until a cycle is found√

|G|

to evaluate the performance of her walk functions experimentally. We will do
the same.

7.1 Walk method

We compared Pollard’s original walk method to a Teske 20-adding walk with
Floyd’s cycle-finding algorithm and FNV32 hashing.

6

https://gmplib.org/
https://www.pcg-random.org/
https://github.com/fharding1/pollard-rho
https://github.com/fharding1/pollard-rho

digits of
subgroup
order average L DLPs
3 3.105 10000
4 3.121 10000
5 3.158 10000
6 3.167 10000
7 3.149 10000
8 3.176 10000
9 3.191 10000
10 3.179 10000
11 3.176 10000
12 3.187 10000
13 3.159 10000

(a) Teske 20-adding, FNV32, Floyd

digits of
subgroup
order average L DLPs
3 4.138 10000
4 4.031 10000
5 4.043 10000
6 4.003 10000
7 3.990 10000
8 3.980 10000
9 4.023 10000
10 4.022 10000
11 4.017 10000
12 4.008 10000
13 4.073 10000

(b) Pollard

Figure 2: Solving DLPs in prime-order subgroups of Z∗
p

8 Conclusion

Pollard’s rho algorithm is known to be one of the fastest and most practical al-
gorithms for elliptic-curve DLPs, however contemporary implementations take
advantage of numerous lesser-known optimizations. Teske came up with new
methods of taking random walks in the group called r-adding and r + q-mixed
walks. We implemented Pollard’s rho algorithm in C and compared a 20-adding
walk with FNV32 hashing to Pollard’s original rho algorithm, and showed em-
pirically that Teske’s method is significantly faster. Future work would be to
study the use of the negation map, other cycle-finding algorithms and hash
functions, and the method of distinguished points. It would also be informative
to test these optimizations in elliptic-curve groups rather than only Z∗

p.

References

[BKL] Joppe W. Bos, Thorsten Kleinjung, and Arjen K. Lenstra. “On the
Use of the Negation Map in the Pollard Rho Method”. In: Algo-
rithmic Number Theory. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 66–82. isbn: 3642145175.

[BLS11] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. On the correct
use of the negation map in the Pollard rho method. Cryptology ePrint
Archive, Paper 2011/003. https://eprint.iacr.org/2011/003.
2011. url: https://eprint.iacr.org/2011/003.

[Bre80] Richard P. Brent. “An improved Monte Carlo factorization algo-
rithm”. In: BIT 20.2 (1980), pp. 176–184. issn: 0006-3835.

7

https://eprint.iacr.org/2011/003
https://eprint.iacr.org/2011/003

[GLV00] Robert Gallant, Robert Lambert, and Scott Vanstone. “Improving
the parallelized Pollard lambda search on anomalous binary curves”.
In: Mathematics of computation 69.232 (2000), pp. 1699–1705. issn:
0025-5718.

[OW99] Paul C van Oorschot and Michael J Wiener. “Parallel collision search
with cryptanalytic applications”. In: J. Cryptology 12.1 (Jan. 1999),
pp. 1–28.

[PH78] S. Pohlig and M. Hellman. “An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance (Corresp.)”
In: IEEE transactions on information theory 24.1 (1978), pp. 106–
110. issn: 0018-9448.

[Pol75] J. M. Pollard. “A monte carlo method for factorization”. In: BIT 15.3
(1975), pp. 331–334. issn: 0006-3835.

[Pol78] J. M. Pollard. “Monte Carlo Methods for Index Computation (mod
p)”. In: Mathematics of computation 32.143 (1978), pp. 918–. issn:
0025-5718.

[Sho97] Victor Shoup. “Lower Bounds for Discrete Logarithms and Related
Problems”. In:Advances in Cryptology — EUROCRYPT ’97. Springer
Berlin Heidelberg, 1997, pp. 256–266. doi: 10.1007/3-540-69053-
0_18. url: https://doi.org/10.1007/3-540-69053-0_18.

[Tes01] Edlyn Teske. “On Random Walks for Pollard’s Rho Method”. In:
Mathematics of Computation 70.234 (2001), pp. 809–825. issn: 00255718,
10886842. url: http://www.jstor.org/stable/2698783 (visited
on 12/06/2022).

[Tes98] Edlyn Teske. “Speeding up Pollard’s rho method for computing dis-
crete logarithms”. In: Algorithmic Number Theory. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg,
1998, pp. 541–554. isbn: 9783540646570.

8

https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
http://www.jstor.org/stable/2698783

	Introduction
	Preliminaries
	Pollard's rho method
	Zp* DLPs

	Teske's r-adding and r+q-mixed walks
	Hash functions

	Cycle-finding
	Group automorphisms
	Experiments
	Walk method

	Conclusion

